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1. 研究背景と目的     

近年, 機械学習の実務・研究において扱われるデータは

大規模化・高次元化しており, 冗長あるいは無関係な特徴

量を多数含むことが多い. このような高次元データでは, 

計算量の増大や過学習, モデル解釈性の低下といった問題

が生じるため,特徴量選択が重要となる[1]. 特徴量選択は

組合せ最適化問題として定式化され, 厳密解探索が困難な

NP 困難問題であることから[2], 近似解を効率的に探索可

能なメタヒューリスティクスが広く用いられてきた.  

しかし，単一のメタヒューリスティクスでは局所解への

停滞や探索と活用のバランスに課題が残るため, 異なる探

索特性を持つアルゴリズムを組み合わせたハイブリッド化

が注目されている. 既存研究では, 重力探索アルゴリズム

（GSA）[3]に遺伝的操作を導入した HGSA [4]が提案されて

いるが, 交叉による追加評価が計算コスト増大を招く可能

性や, 多様性維持の観点で改良の余地が指摘されている． 

  本研究では, GSA と遺伝的アルゴリズムの一種である

CHC [5]を統合したハイブリッド特徴量選択手法 GCHC を

提案する. GSA の収束能力を活かしつつ, HUX 交叉や近親

交配回避, リスタート機構を有する CHC を組み込むこと

で, 局所解停滞の回避と探索多様性の維持を図り, 高次元

特徴量選択における探索効率と解品質の両立を目指す．  

2. 既存手法と提案手法 

2.1 重力探索アルゴリズム(GSA) 

重力探索アルゴリズムは，ニュートンの重力法則と質量

相互作用に着想を得たメタヒューリスティクス最適化アル

ゴリズムである. 各エージェント（解）を物体と見なし， 

解の性能を質量として扱う. 質量の大きい（良い）解が他

の解を引き寄せることで, 集団全体がより良い解の方向へ

移動しながら探索を行う. 

2.2 ハイブリッド重力探索アルゴリズム(HGSA) 

GSA 単体は収束性に強みを持つ一方, 多様性の低下に

より局所解へ陥る可能性がある. このため，交叉と突然変

異の遺伝的操作を取り入れ , 多様性を補うハイブリッド

GSA が提案されている. 
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図 1 Gravitational Search Algorithm [3] 

 

HGSA では, GSA に基づく探索過程に遺伝的アルゴリズ

ムの交叉および突然変異操作を組み込むことで, 探索多様

性の維持を図る. 交叉操作では, 集団内のグローバル最良

エージェントと適応度の低いエージェント間で特徴量選択

ベクトルの一部を交換し, 有効な特徴量構造を保持しつつ

新たな組合せを生成する. また, 探索が停滞した場合には

突然変異を適用し, 選択状態を反転させることで探索領域

を拡張し, 局所解からの脱出を促進する.  

2.3 提案手法 (GCHC) 

提案手法 GCHC は, GSA と CHC アルゴリズムを統合し

たハイブリッド特徴量選択手法である. GSA による物理法

則ベースの収束機構と, CHC による多様性維持および強力

な探索能力を組み合わせることで, 探索と収束のバランス

改善を狙う. GCHC のフローは以下の 4 ステップからなる． 

1. CHC ステップ（HUX 交叉・交叉世代エリート選択） 

2. GSA ステップ（質量・重力に基づく更新） 

3. 総合選抜 

4. リスタート処理 

まず CHC ステップにおいて, ハミング距離制約の下で

HUX 交叉を適用し, 親個体と子個体を統合したプールか

らエリート選択を行い, 多様性を維持しつつ良解を生成す

る. 次に GSA ステップでは, 既存手法と同様に計算を行う. 

その後, CHC および GSA によって得られた個体群を統合

し, 適応度に基づく総合選抜により次世代の個体群を構成

する. さらに, 一定の反復で最良解が更新されない場合に

は停滞と判断し, 部分的リスタートを行い，多様性を再導

入し局所解からの脱出を図る． 
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3. 検証方法 

本研究では, 提案手法を検証するために特徴量全選択モデ

ル, 粒子群最適化(PSO), 重力探索アルゴリズム(GSA), ハ

イブリッド重力探索(HGSA)を比較手法として用いる. 

使用す るデ ータ は サン プル数 60~200, 特徴 量数

2,000~10000 の高次元二値分類データセット（Leukemia, 

Colon Cancer, DLBCL, Arcene）を用いて，提案手法の有効性

を検証した． 

予測性能とより少ない特徴量数の両立を目指すにあたり, 

アルゴリズムの目的関数は 

0.99 × 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + 0.01 ×
#𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

#𝐴𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 

とする.  

特徴量選択後の予測モデルにはロジスティック回帰を

用いる. 正則化項には𝐿2正則化を用い，正則化係数𝐶をハイ

パーパラメータとして調整する . 分類性能の評価指標は

Accuracy, Precision, Recall, F1-score を用いる. また特徴量選

択アルゴリズムと予測モデルのハイパーパラメータ調整を

含めた性能評価のため，Nested Cross-Validation を採用する. 

外側ループではデータを𝐾 = 5分割し，汎化性能の推定を

行う. 内側ループでは3分割し, 特徴量選択アルゴリズム

とロジスティック回帰の正則化係数𝐶を同時に最適化する. 

 

4. 検証結果 

以下が各データセットにおける結果である. 

 

表 1 Leukemia 

MODEL ALL PSO GSA HGSA GCHC 

Features 7129 3238.2 3348.4 3232.6 3052.6 

Accuracy 0.9314 0.9448 0.9448 0.9448 0.9590 

Precision 0.9358 0.9448 0.9448 0.9448 0.9614 

Recall 0.9389 0.9489 0.9489 0.9489 0.9600 

F1 0.9279 0.9409 0.9409 0.9409 0.9558 

Time[s] 27.54 4037.19 3755.18 30825.30 13865.40 

 

Leukemia では, 提案手法 GCHC が各指標で最良となっ

た. また，PSO/GSA/HGSA と同程度以上の精度向上を保ち

つつ, 選択された特徴量数はそれらより少なく, 性能と削

減のバランスが改善した. GCHC の計算時間は HGSA より

も短いが, その他の手法と比べると長い. 

 

表 2 Colon Cancer 

MODEL ALL PSO GSA HGSA GCHC 

Features 2000.00 872.60 882.20 787.80 695.20 

Accuracy 0.7910 0.7897 0.7910 0.7897 0.8385 

Precision 0.7984 0.7920 0.7984 0.7819 0.8340 

Recall 0.8125 0.8125 0.8125 0.8050 0.8500 

F1 0.7827 0.7819 0.7827 0.7814 0.8295 

Time[s] 7.02 1173.02 1436.68 7925.02 4331.90 

 

Colon Cancer においても GCHC が最良の精度を示し, さ

らに選択された特徴量数も他のメタヒューリスティクスよ

り少ない結果となった.  

 

表 3 DLBCL 

MODEL ALL PSO GSA HGSA GCHC 

Features 5469.00 2517.20 2598.20 2477.80 2318.00 

Accuracy 0.8717 0.8842 0.8850 0.8708 0.8583 

Precision 0.8744 0.8800 0.8816 0.8600 0.8494 

Recall 0.9136 0.9220 0.9227 0.9129 0.9053 

F1 0.8642 0.8757 0.8767 0.8598 0.8456 

Time[s] 20.32 3763.50 3722.76 25749.90 12490.80 

 

DLBCL では PSO/GSA が ALL を上回ったが, GCHC は精

度指標で相対的に劣る結果となった. 一方, GCHC は選択

された特徴量数が最少となった. 以上 2 つのデータセット

の計算時間については Leukemia と手法間の相対的な大小

関係は同様であった. 

表 4 Arcene 

MODEL ALL PSO GSA HGSA GCHC 

Features 10000.00 4769.40 4863.00 4752.20 4542.00 

Accuracy 0.7800 0.7800 0.7700 0.7700 0.8100 

Precision 0.7958 0.7936 0.7830 0.7944 0.8298 

Recall 0.7878 0.7822 0.7759 0.7774 0.8143 

F1 0.7771 0.7762 0.7673 0.7650 0.8074 

Time[s] 63.45 14069 19714 107691 58668 

 

Arceneでは, GCHCが各指標で最良となった. また, 選択

された特徴量数も他の手法と比べ少ない. 計算時間につい

ては Leukemia と手法間の相対的な大小関係は同様であっ

たが, 他の 3 つのデータと比べると全体的に長くなった. 

 

5. 考察 

実験結果より, 提案手法 GCHC は 4 データセットのうち

3 データセットにおいて, 分類性能と特徴量削減の両者に

おいて既存手法を上回る有効性を示した. これらのデータ

セットでは, GSA による収束特性と CHC による多様性維

持機構が補完的に機能したと考えられる. 一方, DLBCL で

は他手法と比較して性能が低下する結果となった. これは, 

特徴量削減による情報損失が性能に影響した可能性がある. 

また, GCHC は PSO や GSA と比較して計算時間が増加す

る傾向があるものの, HGSA よりは大幅に短縮されており, 

性能と計算コストのバランスは一定程度改善されている.  
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